65 research outputs found

    Evidence of tropospheric layering: interleaved stratospheric and planetary boundary layer intrusions

    Get PDF
    International audienceWe present a case study of interleaving in the free troposphere of 4 layers of non-tropospheric origin, with emphasis on their residence time in the troposphere. Two layers are stratospheric intrusions at 4.7 and 2.2 km altitude with residence times of about 2 and 6.5 days, respectively. The two other layers at 7 and 3 km altitude were extracted from the maritime planetary boundary layer by warm conveyor belts associated with two extratropical lows and have residence times of about 2 and 5.75 days, respectively. The event took place over Frankfurt (Germany) in February 2002 and was observed by a commercial airliner from the MOZAIC programme with measurements of ozone, carbon monoxide and water vapour. Origins and residence times in the troposphere of these layers are documented with a trajectory and particle dispersion model. The combination of forward and backward simulations of the Lagrangian model allows the period of time during which the residence time can be assessed to be longer, as shown by the capture of the stratospheric-origin signature of the lowest tropopause fold just about to be completely mixed above the planetary boundary layer. This case study is of interest for atmospheric chemistry because it emphasizes the importance of coherent airstreams that produce laminae in the free troposphere and that contribute to the average tropospheric ozone. The interleaving of these 4 layers also provides the conditions for a valuable case study for the validation of global chemistry transport models used to perform tropospheric ozone budgets

    Normosmic Congenital Hypogonadotropic Hypogonadism Due to TAC3/TACR3 Mutations: Characterization of Neuroendocrine Phenotypes and Novel Mutations

    Get PDF
    CONTEXT: TAC3/TACR3 mutations have been reported in normosmic congenital hypogonadotropic hypogonadism (nCHH) (OMIM #146110). In the absence of animal models, studies of human neuroendocrine phenotypes associated with neurokinin B and NK3R receptor dysfunction can help to decipher the pathophysiology of this signaling pathway. OBJECTIVE: To evaluate the prevalence of TAC3/TACR3 mutations, characterize novel TACR3 mutations and to analyze neuroendocrine profiles in nCHH caused by deleterious TAC3/TACR3 biallelic mutations. RESULTS: From a cohort of 352 CHH, we selected 173 nCHH patients and identified nine patients carrying TAC3 or TACR3 variants (5.2%). We describe here 7 of these TACR3 variants (1 frameshift and 2 nonsense deleterious mutations and 4 missense variants) found in 5 subjects. Modeling and functional studies of the latter demonstrated the deleterious consequence of one missense mutation (Tyr267Asn) probably caused by the misfolding of the mutated NK3R protein. We found a statistically significant (p<0.0001) higher mean FSH/LH ratio in 11 nCHH patients with TAC3/TACR3 biallelic mutations than in 47 nCHH patients with either biallelic mutations in KISS1R, GNRHR, or with no identified mutations and than in 50 Kallmann patients with mutations in KAL1, FGFR1 or PROK2/PROKR2. Three patients with TAC3/TACR3 biallelic mutations had an apulsatile LH profile but low-frequency alpha-subunit pulses. Pulsatile GnRH administration increased alpha-subunit pulsatile frequency and reduced the FSH/LH ratio. CONCLUSION: The gonadotropin axis dysfunction associated with nCHH due to TAC3/TACR3 mutations is related to a low GnRH pulsatile frequency leading to a low frequency of alpha-subunit pulses and to an elevated FSH/LH ratio. This ratio might be useful for pre-screening nCHH patients for TAC3/TACR3 mutations

    Caractérisation de la tropopause extratropicale avec les données aéroportées<br />MOZAIC : zone de mélange et d'échange

    No full text
    This thesis aims atMOZAIC data analyses and to improve understanding of Stratosphere-Troposphere Exchange (STE) on case study scale or global scale. The use of Lagrangiantechniques and the mesoscale model MESO-NH underlines importance of STE into a summertimecyclogenesis case study. It characterizes a deep stratospheric intrusion and theimpact of convective mixing across the tropopause on chemical distribution into the UTLSregion. A lagrangian analysis of a second case study shows that frontal zones of midlatitudesare able to layered stratify air masses processed by coherent airstreams. Finally, a studyshows the impact of STE on seasonal distribution of ozone and CO at midlatitudes UTLSregion. A dynamical referential, link to the vertical structure of baroclinic waves, allows acoherent reshape of observations along upper troughs and upper ridges. The mixing layerformation over the tropopause and seasonal chemical variations are shown. A lagrangiananalyses of zonal variations is tented.Cette thèse porte sur l'analyse des données MOZAIC pour améliorer la connaissancedes ´échanges stratosphère-troposphère (STE) au niveau du cas d'étude ou au niveau global saisonnier. L'utilisation de techniques lagrangiennes et du modèle meso-échelle MESO-NHmet en évidence l'importance des STE sur la distribution chimique de l'UTLS dans un casde cyclogenèse d'été. Une ´étude lagrangienne d'un second cas d'étude montre que les zonesfrontales des moyennes latitudes peuvent être responsables d'une stratification en couchesde masses d'air issues de différents courants cohérents. Enfin, l'impact des STE sur lesdistributions saisonnières d'ozone et du CO aux moyennes latitudes dans la zone UTLS estprésente. Un nouveau repère dynamique permet un replacement cohérent des observationsle long des dorsales et des thalwegs d'altitude. La formation d'une couche de mélange audessus de la tropopause, et les variations chimiques saisonnières sont présentées. Une analyse lagrangienne des variations zonales est tentée

    Caractérisation de la tropopause extratropicale avec les données aéroportées MOZAIC (zone de mélange et d'échange)

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocTOULOUSE-Observ. Midi Pyréné (315552299) / SudocSudocFranceF

    Lagrangian Stochastic Modelling of Dispersion in the Convective Boundary Layer with Skewed Turbulence Conditions and a Vertical Density Gradient: Formulation and Implementation in the FLEXPART Model

    Get PDF
    International audienceA correction for the vertical gradient of air density has been incorporated into a skewed probability density function formulation for turbulence in the convective boundary layer. The related drift term for Lagrangian stochastic dispersion modelling has been derived based on the well-mixed condition. Furthermore, the formulation has been extended to include unsteady turbulence statistics and the related additional component of the drift term obtained. These formulations are an extension of the drift formulation reported by Luhar et al. (1996) following the well-mixed condition proposed by Thomson (1987). Comprehensive tests were carried out to validate the formulations including consistency between forward and backward simulations and preservation of a well-mixed state with unsteady conditions. The stationary state CBL drift term with density correction was incorporated into the FLEXPART and FLEXPART-WRF Lagrangian models, and included the use of an ad hoc transition function that modulates the third moment of the vertical velocity based on stability parameters. Due to the current implementation of the FLEXPART models, only a steady-state horizontally homogeneous drift term could be included. To avoid numerical instability, in the presence of non-stationary and horizontally inhomogeneous conditions, a re-initialization procedure for particle velocity was used. The criteria for re-initialization and resulting errors were assessed for the case of non-stationary conditions by comparing a reference numerical solution in simplified unsteady conditions, obtained using the non-stationary drift term, and a solution based on the steady drift with re-initialization. Two examples of “real-world” numerical simulations were performed under different convective conditions to demonstrate the effect of the vertical gradient in density on the particle dispersion in the CBL

    Development of turbulent scheme in the FLEXPART-AROME v1.2.1 Lagrangian particle dispersion model

    Get PDF
    International audienceThe FLEXible PARTicle dispersion model FLEX-PART, first released in 1998, is a Lagrangian particle dispersion model developed to simulate atmospheric transport over large and mesoscale distances. Due to FLEXPART's success and its open source nature, different limited area model versions of FLEXPART were released making it possible to run FLEXPART simulations by ingesting WRF (Weather Research Forecasting model), COSMO (Consor-tium for Small-scale Modeling) or MM5 (mesoscale community model maintained by Penn State university) meteorological fields on top of the ECMWF (European Centre for Medium-Range Weather Forecasts) and GFS (Global Forecast System) meteorological fields. Here, we present a new FLEXPART limited area model that is compatible with the AROME mesoscale meteorological forecast model (the Applications of Research to Operations at Mesoscale model). 1 FLEXPART-AROME was originally developed to study mesoscale transport around La Réunion, a small volcanic island in the southwest Indian Ocean with a complex orographic structure, which is not well represented in current global operational models. We present new turbulent modes in FLEXPART-AROME. They differ from each other by dimensionality, mixing length parameterization, turbulent transport constraint interpretation and time step configuration. A novel time step was introduced in FLEXPART-AROME. Performances of new turbulent modes are compared to the ones in FLEXPART-WRF by testing the conservation of well-mixedness by turbulence, the dispersion of a point release at the surface and the marine boundary layer evolution around Réunion. The novel time step configura-1 Applications de la Recherche à l'Opérationnel à Méso-Echelle. tion proved necessary to conserve the well-mixedness in the new turbulent modes. An adaptive vertical turbulence time step was implemented, allowing the model to adapt on a finer timescale when significant changes in the local turbulent state of the atmosphere occur

    Stratosphere-troposphere exchange in a summertime extratropical low: analysis

    Get PDF
    International audienceOzone and carbon monoxide measurements sampled during two commercial flights in airstreams of a summertime midlatitude cyclone are analysed with a Lagrangian-based study (backward trajectories and a Reverse Domain Filling technique) to gain a comprehensive understanding of transport effects on trace gas distributions. The study demonstrates that summertime cyclones can be associated with deep stratosphere-troposphere transport. A tropopause fold is sampled twice in its life cycle, once in the lower troposphere (O3?100 ppbv; CO?90 ppbv) in the dry airstream of the cyclone, and again in the upper troposphere (O3?200 ppbv; CO?90 ppbv) on the northern side of the large scale potential vorticity feature associated with baroclinic development. In agreement with the maritime development of the cyclone, the chemical composition of the anticyclonic portion of the warm conveyor belt outflow (O3?40 ppbv; CO?85 ppbv) corresponds to the lowest mixing ratios of both ozone and carbon monoxide in the upper tropospheric airborne observations. The uncertain degree of confidence of the Lagrangian-based technique applied to a 100 km segment of upper level airborne observations with high ozone (200 ppbv) and relatively low CO (80 ppbv) observed northwest of the cyclone prevents identification of the ozone enrichment process of air parcels embedded in the cyclonic part of the upper level outflow of the warm conveyor belt. Different hypotheses of stratosphere-troposphere exchange are discussed

    Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields

    No full text
    International audienceTropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the subkilometer resolution of 333 m is necessary to reproduce realistic air pollution patterns in this case of short-range transport over a complex terrain area. Globally, this work contributes to enrich the sparsely documented domain of real nested microscale air pollution modelling. This study dealing with the determination of the proper resolution grid and proper turbulence scheme, is of significant interest to the near-source and complex terrain air quality research community

    Characterization of the composition, structure, and seasonal variation of the mixing layer above the extratropical tropopause as revealed by MOZAIC measurements

    No full text
    International audienceThe chemical composition of the mixing layer above the tropopause, which is mainly influenced by stratosphere troposphere exchange, impacts the chemistry and radiative balance of the troposphere. A better understanding of its seasonal and spatial variation is needed to reduce uncertainties of global chemistry-transport models. In this paper, we use the Measurements of Ozone, Water Vapour, Nitrogen Oxides and Carbon Monoxide by Airbus In-Service Aircraft (MOZAIC) ozone and carbon monoxide data from 2003. The five MOZAIC aircraft fly daily between Europe and North America and between Europe and Asia, at 9–12 km crossing the tropopause when transecting upper level troughs. We present a new coordinate system consisting of potential vorticity on the y axis and the angle between the local PV surface and the horizontal on the x axis to study the mixing that occurs in the tropopause region. This coordinate system allows us to view the typical distribution of ozone and CO within upper level troughs. Using in situ measurements and a Lagrangian analysis, we have identified a mixing layer associated with stirring and mixing in the tropopause region between 2 and 6 pvu. Regional variations of the ozone and CO distributions and chemical anomalies between the center and the borders of the upper level troughs are found within the mixing layer

    Overview of aerosol observations from the Marion Dufresne Atmospheric Program – Indian Ocean (MAP-IO) program

    No full text
    The study of marine aerosols size distribution and cloud condensation nuclei (CCN) properties is of major interest as they influence clouds life and clouds radiative properties, particularly in the remote ocean which remains poorly documented. Several short campaigns focusing on specific regions as phytoplankton bloom regions, pristine regions or remote areas influenced by continental air masses took place to address this issue. However, long sampling periods targeting different in-situ conditions had not been realized. In this context, the MAP-IO program was launched with the aim of providing a large new set of marine aerosol observations (size distribution from 10 nm to 10 µm and CCN properties) on different sea state and meteorological conditions. Thus, the Marion Dufresne vessel has been equipped with a set of various instruments described in Tulet et al. (in preparation) or on the website www.mapio.re. Two years after the launch of the program, we now have aerosol observations (about 200 days) over an area covering 50 ° of latitudes and extending from the Tropics to the upper Southern Ocean.  These measurements were first used to investigate the size distribution and CCN variability of marine aerosols according to local conditions (sea states and wind speed).The results highlight that at the lowest latitudes (south of 50 °S) the minimum concentration of CCN tends to increase when the wind speed exceeds approximately 12 m s-1, which is consistent with the literature as sea salt  emissions are mechanically driven by local conditions and tend to be predominant from 10 m s-1. .When analyzing the size distributions of aerosols according to the wind speed during a 5-day storm that occurred in the Southern Ocean, we found that: (1) the number of particles with a diameter less than 500 nm is predominant and stable over the full range of wind speeds (4 to 33 m s-1), (2) the number of aerosols with diameter greater than 500 nm remains low under 10 m s-1 and increases from 10 m s-1 to 33 m s-1 to finally reach the concentration of the particles with diameter less than 500 nm at 33 m s-1.  Taking this first analysis into account, further work will focus on average size distributions per region, season, origin of air masses (from simulated FLEXPART back trajectories) and wind speed conditions. Analysis of these distributions is unique due to the size of the database, the variability of regions encountered and knowing that the measurements were carried out with the same experimental device.   Finally, to deepen the study, the activation diameter of marine aerosols will be determined and the hygroscopicity parameter Kappa-Köhler will be calculated (Petters and Kreidenweis, 2007) in this case to distinguish sea salts (Kappa~1.2) from organic matter (0.0
    corecore